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Abstract: In this paper, we propose a modification to the recently developed Parity check
Transformation Algorithm (PTA) used in the decoding of Reed Solomon codes. This extension of
the PTA is referred to as the Modified Parity check Transformation Algorithm (MPTA). The MPTA is
developed with the aim of reducing the number of iterations run by the algorithm during the decoding
process, and also to improve on the SER performance of the algorithm. Three version of the MPTA are
developed in this paper to achieve this goal.
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1. INTRODUCTION

Reed-Solomon (RS ) codes [1] are a class of linear block
codes that are widely used for applications that range from
telecommunications to storage devices. These codes are
largely popular because they meet the Singleton bound.
What this means is that a hard decision decoder (HDD)
based on minimum distance decoding can correct up to
[n−k]/2 symbols for a given (n,k) RS code. Hard decision
decoders for RS codes include the Berlekamp-Massey
(B-M) algorithm [2] [3], the Euclidean algorithm [4], and
the Berlekamp-Welch algorithm [5]. HDD algorithms for
RS codes have been shown to be efficient, however, they
are significantly outperformed by soft decision decoding
techniques.

Koetter and Vardy (KV) [6] presented a symbol level
decoding algorithm that utilizes the soft reliability
information from the channel to make a multiplicity
matrix that is fed into the Guruswami Sudan (GS )
[7] algorithm. The KV algorithm outperforms HDD
algorithms significantly especially for low rate codes.
However, complexity can become prohibitively large when
trying to achieve large coding gains with the KV algorithm
[8].
The Parity check Transformation Algorithm (PTA) is a
symbol wise soft decision decoding algorithm that was
recently proposed in [9]. The algorithm transforms the
parity check matrix, H, of an RS code after every iteration
depending on the reliability of the symbols. The reliability
of the symbols are attained from soft information received
at the channel output. In the same paper, the PTA algorithm
was shown to outperform the widely used Koetter and
Vardy (KV) algorithm and the Berlekamp-Massey (BM)
algorithm for simulations run in the AWGN channel with
the symbols being mapped onto a 16QAM modulation
scheme. The performance was measured in terms of the
symbol error rate (SER). The major drawback of the PTA
is the high number of iterations needed to find the decoded
codeword, especially for low SNR cases.
In this paper, modifications to the PTA are introduced

with the aim of reducing the number of iterations required
to decode. These modifications are used to develop an
extension of the PTA, which is referred to as the Modified
PTA (MPTA)
The rest of the paper is structured as follows. A basic
description of how the PTA decoding algorithm works is
given in Section 2. The analysis and modifications to the
PTA is explained Section 3. A performance comparison
between the PTA and the MPTA algorithms is done in
Section 4. Finally, a conclusion is given in Section 5.

2. THE PARITY CHECK TRANSFORMATION
ALGORITHM

We now summarize the PTA algorithm [9] to establish
notation. Consider an (n,k) RS code with a parity check
matrix H in the field GF(2p). Let c be a codeword of
length n. The symbols of the codeword c are mapped
onto signals based on a selected modulation scheme and
then transmitted through an AWGN channel. At the output
of the channel a received vector r is obtained. Based on
the vector r a reliability matrix R can be constructed. The
matrix R is then fed into the PTA decoder.

The steps involved in one iteration of the PTA algorithm
are as follows

1. Getting the symbol reliability: Find the highest values
in each column of the R matrix. From these values,
let the k highest values represent the most reliable
symbols. The indices of these symbols are denoted
by K . The remaining n− k values represent the least
reliable symbols and their indices are denoted byU.

2. The H matrix transformation step: Transform the H
matrix into matrix Ht by performing row operations
similar to Gaussian such that Ht is in a rearranged
systematic form based on the indices U and K . The
transformation is done in such a way that the indices
ofU match the partitioned identity matrix and the K
indices match the parity partition as shown in [9]. A
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computationally efficient way of doing this is shown
in [10].

3. Performing the syndrome checks: For 1 ≤ i ≤ (n− k),
the ith row of the matrix Ht can be denoted as Ht

i . A
syndrome check is now performed using all the n−
k rows of the matrix H by performing hard decision
detection on the R matrix to obtain a vector r̂, and
getting the dot product r̂ ·Ht

i . Due to the rearranged
systematic structure of Ht

i , only one symbol with the
index in U participates in the syndrome check. All
the k symbols in K participate in the dot product.

4. The correction step: If the dot product is not zero, we
decrease the symbol indexed in U by the value of a
correction factor, δ, and decrease the symbols indexed
in K by δ/2. If the syndrome check is satisfied we
add the δ to the symbol indexed in U and δ/2 to the
symbols indexed in K .

5. The update step: These corrected reliabilities are then
used to update the R matrix based on the U and K
indices. The updated R matrix is then used in the next
iteration.

6. The stopping criterion: steps 1 to 5 are repeated until
all the (n−k) syndrome checks are satisfied, or until a
negative value appears in the matrix R.

From [9] it was shown that a smaller correction factor (δ)
improves the performance of the algorithm. This, however,
comes at the cost of increased number of iterations as the
algorithm has to perform more corrections to the received
codeword.

3. MODIFICATIONS TO THE PTA ALGORITHM

We now analyze the performance of the PTA and the
effect of the modifications to the algorithm. Simulations
are based on a (15,7) Reed-Solomon code using BPSK
modulation in an AWGN channel. The value of δ used
is 0.001.

3.1 Performance of the PTA based on the number of
iterations

To better understand how the PTA algorithm works, the
early stopping condition used in [9] is not considered.
The only stopping criterion for the algorithm is when
all syndrome checks are satisfied. This version of the
PTA defined by the syndrome check as the only stopping
condition is denoted as PTAγ.
Table. 1 shows the results for simulations run for the PTAγ
with 1000 codewords at an SNR of 0 dB. The number of
codewords with error and the number of iterations required
to satisfy the checks are recorded.

Fig. 1 shows simulations for the Hamming distance
between the actual codeword and the decoded codeword at
the output of each iteration of the PTAγ. Results in Fig. 1
are representative for the 4 types of codewords decoded

Table 1: Number of errors compared to the number of
iterations for 1000 codewords

Number of iterations detected codeword Number of codewords

Less than 1000 Correct 853

Wrong 54

More or equal to 1000 Correct 3

Wrong 90
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Figure 1: Comparing the Hamming distance to the Number
of Iterations.

using the PTAγ in Table 1. The 4 types of codewords
represented include: the codewords correctly decoded
within 1000 iterations, the codewords decoded correctly
with more than 1000 iterations, the codewords decoded
incorrectly within 1000 iterations and the codewords
decoded incorrectly for over 1000 iterations.

From Table 1 and Fig. 1 it can be seen that the PTAγ
algorithm outputs a codeword, regardless if it is correct
or incorrect, when it satisfies the syndrome checks. What
this means is that more iterations for the PTAγ algorithm
don’t necessarily mean an improved performance with the
algorithm. This can be seen especially when the algorithm
runs for more than 1000 iterations. From Table 1 it
can be seen that most of the syndrome checks for the
correct codewords are also satisfied whenever the PTAγ
runs less than 1000 iterations. Most incorrect codewords
are received from the PTAγ whenever the algorithm runs
for more than 1000 iterations.
From Table 1 only 3 codewords that run for 1000 or
more iterations with the PTAγ are decoded correctly.
This indicates the presence of a threshold in the PTAγ
which occurs when the algorithm runs for more than
1000 iterations. Fig. 2 investigates the effect of different
thresholds on the PTAγ by setting different maximum
number of iterations (Imax) the algorithm can run.

From Fig. 2 it can be seen that the threshold of the PTAγ
is at Imax = 1000 and that it serves as a point of saturation
for the algorithm, as the performance appears to remain
the same beyond this point. Thus, a set maximum value
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Figure 2: Performance comparison of different values of
Imax

of 1000 iterations for the PTAγ should be used to prevent
redundancy.

3.2 Performance of the PTA based on the number of
negative values in R

A possible reason for the increased errors with more
iterations could be the appearance of negative values
formed in the reliability matrix, originating from the
corrections done during each iteration. Simulations to
see how the number of negative values in the reliability
matrix corresponded to the actual codeword matching the
received codeword at the output of the PTAγ. The test was
run for 1000 codewords. The results of these simulations
were recorded in Table. 2.

From Table. 2, it can be seen that for most cases, the

Table 2: Number of errors compared to the number of
negative values for 1000 codewords

Reliability Matrix detected codeword Number of codewords

Negative found Correct 7

Wrong 133

Remains Positive Correct 858

Wrong 2

presence of a negative value in the reliability matrix
directly affect the number of errors of the received
codeword at the output of PTAγ. This result validates the
early stopping condition of the PTA algorithm used in [9].
To prevent errors caused by the negative values, absolute
values of the corrected reliabilites are used after each
iteration of the PTAγ. This modification of the PTAγ with
absolute values is referred to as the absolute PTAγ and
denoted as aPTAγ.

3.3 Performance of the PTA based on the Stagnant check.

If the absolute values are to be used, the early stopping
condition defined in [9] is not applicable as the reliability

matrix does not run into a negative value. To prevent the
aPTAγ from running upto Imax iterations in the event it is
unable to find the correct codeword, a new early stopping
condition is required. A modification of the stagnant check
[11], is added to the algorithm to perform this function.
The stagnant check acts as a predictive algorithm, by trying
to determine if the algorithm will have a decoding failure
or a decoding success.
The stagnant check algorithm works as follows

1. At a given iteration Iα, the weight of the unsatisfied
syndrome checks (w(s)) is noted.

2. The value of w(s) is noted for each iteration after Iα
until a specified iteration Istag is reached.

3. At iteration Istag, a stagnant check is done.

• If w(s) is the same from Iα to Istag then the
algorithm is perceived to be stagnant (unable
to find the correct codeword), and the decoding
process is stopped.

• If w(s) has changed from Iα to Istag then the
aPTAγ runs until all the syndrome checks are
satisfied, or until Imax is reached.

The main aim of the stagnant check is to help reduce
the number of iterations required by the aPTAγ. To get
an optimum performance of the aPTAγ with the stagnant
check, simulations are done for different values of Istag
and run for Imax = 1000 . Simulations are run for Iα = 1
and the stagnant check was done at Istag = 100, Istag = 200,
Istag = 300, Istag = 400, Istag = 500, Istag = 600, Istag = 700.
The average number of iterations run by each was noted.
The results for these simulations can be seen in Fig. 3.

From Fig. 3 it can be seen that the aPTAγ with the value
of Istag = 400 gives the best performance when compared
to the rest. The aPTAγ with the stagnant check is referred
to as the Modified Parity check Transformation Algorithm
(MPTA).

3.4 Performance of the PTA based on the value of the
correction factor, δ

From Fig. 3(b), it can be seen that even with the stagnant
check the algorithm still runs for many iterations in low
SNR regions. The main reason for this is the use of a
small value of δ. The smaller the value of δ the better the
perfomance, but this is at the cost of an increased number
of iterations as shown in [9]. This is because there is not
a large difference in the corrections made by δ in each
iteration for the wrong symbols as it attempts to satisfy the
syndrome checks. Since the difference in the corrections
made by a δ of 0.001 are quite small several iterations
would be required to satisfy the checks. Simulations for
different values of δ with the aPTAγ are done to test for the
performance and the average number of iteration required
by the algorithm. No stagnant check is used because an
accurate representation of the average number of iterations
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(a) SER Perfomance for different values of Istag for the MPTA
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(b) Average number of iterations for the MPTA

Figure 3: Perfomance of the MPTA based on the value of
Istag

run by the algorithm for each SNR is required. The results
for these simulations can be seen in Fig. 4.

Fig. 4 validates the results shown in [9] with a BSPK
modulation scheme for the PTA. It can also be seen that the
number of iterations run by the aPTAγ between δ = 0.005
and δ = 0.001, increases as the value of δ reduces for lower
SNR regions. However, the opposite seems to happen
between δ = 0.01 and δ = 0.05. This is due to these values
of δ making a large difference in the corrections made to
the soft information. This causes the algorithm to change
the reliability of the symbols faster, thus passing the correct
symbols as it satisfies the checks. It is evident from Fig. 4
that the value of the correction factor should be δ < 0.01
for better SER results to be obtained with the algorithm.
To reduce the number of iterations run by the MPTA, a
discreet variable δ approach is added to the algorithm. For
this implementation, two scenarios are considered. A case
of increasing values of δ, and a case of reducing values of
δ. In both cases, the value of δ changes with respect to the
number of iterations.
For this analysis, three values of δ are used. The values
of δ chosen are δ = 0.005, δ = 0.0025 and δ = 0.001. The
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Figure 4: Perfomance of the aPTAγ based on different
values of δ

reason these values of δ have been selected is because the
performance difference between δ = 0.001 and δ = 0.005,
from Fig. 4, is about 0.5 dB.
To help with the implementation of this form of discreet
variable δs with the algorithm, a similar simulation to the
one done in Fig. 1 is done for the PTAγ with δ = 0.005
and δ = 0.0025 for 1000 codewords. This is done to help
with the assignment of the number of iterations that each δ
receives. The results for these simulations can be seen in
Fig. 5, Table 3 and Table 4.
The simulations are let to run for as many iterations until
the syndrome checks are satisfied. For Fig. 5, to better see
the results, only the first 1000 iterations are shown. Once
again, results for only 4 codewords that are representative
of most of the other codewords decoded with the PTAγ are
used. The 4 types of codewords are highlighhted in the
results recorded in Table 3 and Table 4.

From Fig. 5 and Table 4 it can be seen that for δ =
0.005 most of the correct received codewords are found
within 200 iterations. Beyond this, the algorithm begins
to saturate and is unable to find the correct codeword to
satisfy the syndrome checks. For δ = 0.0025 the algorithm



Vol.108 (1) March 2017SOUTH AFRICAN INSTITUTE OF ELECTRICAL ENGINEERS28

0 200 400 600 800 1000
0

5

10

15

Number of Iterations

H
a
m
m
in
g
D
is
ta
n
ce

(a) Comparing the Hamming distance to the Number of iterations for δ = 0.0025
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(b) Comparing the Hamming distance to the Number of iterations for δ = 0.005

Figure 5: Performance of the PTAγ with δ = 0.0025 and
δ = 0.005 based on the number of iterations

Table 3: Number of errors compared to the number of
iterations for 1000 codewords with δ = 0.0025

Number of iterations detected codeword Number of codewords

Less than 400 Correct 808

Wrong 36

More or equal to 400 Correct 14

Wrong 142

Table 4: Number of errors compared to the number of
iterations for 1000 codewords with δ = 0.005

Number of iterations detected codeword Number of codewords

Less than 200 Correct 733

Wrong 22

More or equal to 200 Correct 24

Wrong 221

appears to saturate after about 400 iterations as seen in
Fig. 5 and Table 3. Therefore, of the 1000 maximum
iterations for the MPTA, the number of iterations each δ
runs is assigned with respect to the SER perfomance shown

in Fig. 4(a) and the performance based on the number of
iterations required to satisfy the checks shown in Fig. 1
and Fig. 5. For the case of the increasing δ, the number of
iterations is split as follows

• δ = 0.001 runs for the first 625 iterations

• δ = 0.0025 runs the next 300 iterations

• δ = 0.005 runs the last 75 iterations

For the case of the decreasing δ, the number of iterations
is split as follows

• δ = 0.005 runs for the first 75 iterations

• δ = 0.0025 runs the next 300 iterations

• δ = 0.001 runs the last 625 iterations

Simulations for the discreet variable δ version of the MPTA
are done to test for the optimum performance with different
values of Istag. These simulations are for SER performance
and the average number of iterations required by the
algorithm. The values of Istag used in the simulations for
the decreasing δ are smaller than those used for increasing
δ. The reason for this that for the decreasing δ case, the
first value of δ used is 0.005. An earlier stagnant check
for δ = 0.005 is required as the corrections it makes to
the codeword during each iteration are larger than those
of δ = 0.001. As a result it runs into a stagnant state much
earlier as shown in Fig. 5. The results of these simulations
for the both cases of increasing and decreasing δ can be
seen in Fig. 6 and Fig. 7 respectively.

From Fig. 6 it can be seen that the best performance, in
terms of SER, is obtained when Istag = 400. It is naturally
outperformed by Istag = 100, Istag = 200 and Istag = 300 in
terms of the number of iterations required for the lower
SNR values. Based on the SER performance, the value of
Istag = 400 was selected for the increasing δ version of the
MPTA in the comparative study.
A similar observation can be done in Fig. 7 with Istag = 80,
as it the gives best performance in terms of SER. In
terms of the number of iterations, it is outperformed by
Istag = 20, Istag = 40 and Istag = 60 for low SNR values.
Based on the SER performance, the value of Istag = 80
was selected for the decreasing δ version of the MPTA in
the comparative study.

4. PERFORMANCE ANALYSIS

Fig. 8 shows simulations for the performance comparison
of PTA to that of the MPTA with a single δ of 0.001
and Istag = 400, an increasing δ with Istag = 400 and a
decreasing δ with Istag = 80.
From Fig. 8 it can be seen that the single δ MPTA and the
increasing δ MPTA have an almost identical performance
and they both outperform the PTA in terms of SER. In
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Figure 6: Performance of the MPTA

terms of the average number of iterations for low SNR
areas, the decreasing δMPTA significantly outperforms all
versions of the PTA. However, this is at a cost of about
0.5 dB. This SER performance difference justifies the use
of the decreasing δ MPTA when a trade-off between SER
performance and number of iterations is required. The
increasing δ MPTA runs for less iterations than the PTA
and gives a better performance. The single δ MPTA gives
a better perfomance than the PTA but gives no difference
in the average number of iterations.

5. CONCLUSION

In this paper, we are able to develop three different versions
of the MPTA, each with its own trade-offs. The single δ
MPTA increases the performance of the algorithm but at
no reduction in the number of iterations. The increasing δ
MPTA outperforms the PTA in terms of both the SER and
the number of iterations required to decode. It also gives an
almost identical performance to that of the single δMPTA
while running for less iterations in the low SNR regions.
Finally, the decreasing δ MPTA significantly reduces the
average number of iterations run by the algorithm by well
over 400 iterations. This reduction in the number of

iterations comes at the cost of a loss of less than 0.5 dB
when compared to the PTA.
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Figure 7: Performance of the MPTA
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Figure 8: Performance of the MPTA compared to the PTA


